161 research outputs found

    An Enhanced Entropy Approach to Detect and Prevent DDoS in Cloud Environment

    Get PDF
    Distributed Denial of Service (DDoS) attack launched in Cloud computing environment resulted in loss of sensitive information, Data corruption and even rarely lead to service shutdown. Entropy based DDoS mitigation approach analyzes the heuristic data and acts dynamically according to the traffic behavior to effectively segregate the characteristics of incoming traffic. Heuristic data helps in detecting the traffic condition to mitigate the flooding attack. Then, the traffic data is analyzed to distinguish legitimate and attack characteristics. An additional Trust mechanism has been deployed to differentiate legitimate and aggressive legitimate users. Hence, Goodput of Datacenter has been improved by detecting and mitigating the incoming traffic threats at each stage. Simulation results proved that the Enhanced Entropy approach behaves better at DDoS attack prone zones. Profit analysis also proved that the proposed mechanism is deployable at Datacenter for attack mitigation and resource protection which eventually results in beneficial service at slenderized revenu

    Detector for Particle Surface Contamination

    Get PDF
    A system and method for detecting and quantizing particle fallout contamination particles which are collected on a transparent disk or other surface employs an optical detector, such as a CCD camera, to obtain images of the disk and a computer for analyzing the images. From the images, the computer detects, counts and sizes particles collected on the disk The computer also determines, through comparison to previously analyzed images, the particle fallout rate, and generates an alarm or other indication if the rate exceeds a maximum allowable value. The detector and disk are disposed in a housing having an aperture formed therein for defining the area on the surface of the disk which is exposed to the particle fallout. A light source is provided for evenly illuminating the disk. A first drive motor slowly rotates the disk to increase the amount of its surface area which is exposed through the aperture to the particle fallout. A second motor is also provided for incrementally scanning the disk in a radial direction back and forth over the camera so that the camera eventually obtains images of the entire surface of the disk which is exposed to the particle fallout

    A review on 3D printing bio-based polymer composite

    Get PDF
    Polymers play a vital role in our daily lives. In various fields such as medical, food industry and automotive applications, the use of biopolymers is commonly used. The most widely used polymers and fillers among biopolymers are polylactic acid (PLA) and cellulose, which are biocompatible and biodegradable due to their eco-friendly properties. Extensive usage of cellulose in various forms has been applied in combination to PLA but there is only a few research that has been done by using the 3D printing method. This paper covers the types of biodegradable biopolymer materials, types of coupling agents and plasticizers, mechanical properties and applications. This paper discusses the types of cellulose ranging from micro to nano, including other types and sources of cellulose that have been researched and are compatible with PLA. In order to generate biocompatible polymers with stronger and better mechanical properties, the findings of these experiments are all tied together. These biopolymers are commonly used in the biomedical industry and are expected to improve their benefits in this field

    A review of FDM and graphene-based polymer composite

    Get PDF
    Graphene is a carbon that has a unique structure that is excellent in enhancing mechanical, electrical and thermal properties. The fused deposition modelling (FDM) process is a widely used 3D printing method for its low investment and operating cost. Although the FDM process is cheaper and affordable, yet the printed parts are more fragile compare to other 3D printing methods. This paper covers about FDM process and the type of base materials and filler materials. However, the focus is mainly on ABS and graphene. The mechanical properties of ABS/Graphene polymer composite and application of ABS and graphene in the industry were also discussed. Hence, it proved that graphene enhances the properties of ABS. This study is done to improve polymer-based filaments for future references

    Fused Deposition Modelling of Polymer Composite: A Progress

    Get PDF
    Additive manufacturing (AM) highlights developing complex and efficient parts for various uses. Fused deposition modelling (FDM) is the most frequent fabrication procedure used to make polymer products. Although it is widely used, due to its low characteristics, such as weak mechanical properties and poor surface, the types of polymer material that may be produced are limited, affecting the structural applications of FDM. Therefore, the FDM process utilises the polymer composition to produce a better physical product. The review’s objective is to systematically document all critical information on FDMed-polymer composite processing, specifically for part fabrication. The review covers the published works on the FDMed-polymer composite from 2011 to 2021 based on our systematic literature review of more than 150 high-impact related research articles. The base and filler material used, and the process parameters including layer height, nozzle temperature, bed temperature, and screw type are also discussed in this review. FDM is utilised in various biomedical, automotive, and other manufacturing industries. This study is expected to be one of the essential pit-stops for future related works in the FDMed-polymeric composite study

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Full text link
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    Callisto's Atmosphere and Its Space Environment: Prospects for the Particle Environment Package on Board JUICE

    Get PDF
    The JUpiter ICy moons Explorer (JUICE) of the European Space Agency will investigate Jupiter and its icy moons Europa, Ganymede, and Callisto, with the aim to better understand the origin and evolution of our Solar System and the emergence of habitable worlds around gas giants. The Particle Environment Package (PEP) on board JUICE is designed to measure neutrals and ions and electrons at thermal, suprathermal, and radiation belt energies (eV to MeV). In the vicinity of Callisto, PEP will characterize the plasma environment, the outer parts of Callisto's atmosphere and ionosphere and their interaction with Jupiter's dynamic magnetosphere. Roughly 20 Callisto flybys with closest approaches between 200 and 5,000 km altitude are planned over the course of the JUICE mission. In this article, we review the state of the art regarding Callisto's ambient environment and magnetospheric interaction with recent modeling efforts for Callisto's atmosphere and ionosphere. Based on this review, we identify science opportunities for the PEP observations to optimize scientific insight gained from the foreseen JUICE flybys. These considerations will inform both science operation planning of PEP and JUICE and they will guide future model development for Callisto's atmosphere, ionosphere, and their interaction with the plasma environment

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870

    A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber

    Full text link
    We have developed a convolutional neural network (CNN) that can make a pixel-level prediction of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the network design, training techniques, and software tools developed to train this network. The goal of this work is to develop a complete deep neural network based data reconstruction chain for the MicroBooNE detector. We show the first demonstration of a network's validity on real LArTPC data using MicroBooNE collection plane images. The demonstration is performed for stopping muon and a νμ\nu_\mu charged current neutral pion data samples
    • …
    corecore